12 research outputs found

    Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline

    Get PDF
    A class of extensions of the Standard Model allows Lorentz and CPT violations, which can be identified by the observation of sidereal modulations in the neutrino interaction rate. A search for such modulations was performed using the T2K on-axis near detector. Two complementary methods were used in this study, both of which resulted in no evidence of a signal. Limits on associated Lorentz and CPT-violating terms from the Standard Model extension have been derived by taking into account their correlations in this model for the first time. These results imply such symmetry violations are suppressed by a factor of more than 10 20 at the GeV scale

    A Real-Time Intrusion Detection and Protection System at System Call Level under the Assistance of a Grid

    No full text
    Part 2: The 2014 Asian Conference on Availability, Reliability and Security, AsiaARES 2014International audienceIn this paper, we propose a security system, named the Intrusion Detection and Protection System (IDPS for short) at system call level, which creates personal profiles for users to keep track of their usage habits as the forensic features, and determines whether a legally login users is the owner of the account or not by comparing his/her current computer usage behaviors with the user’s computer usage habits collected in the account holder’s personal profile. The IDPS uses a local computational grid to detect malicious behaviors in a real-time manner. Our experimental results show that the IDPS’s user identification accuracy is 93%, the accuracy on detecting its internal malicious attempts is up to 99% and the response time is less than 0.45 sec., implying that it can prevent a protected system from internal attacks effectively and efficiently

    Towards Tamper Resistant Code Encryption: Practice and Experience

    No full text
    In recent years, many have suggested to apply encryption in the domain of software protection against malicious hosts. However, little information seems to be available on the implementation aspects or cost of the different schemes. This paper tries to fill the gap by presenting our experience with several encryption techniques: bulk encryption, an on-demand decryption scheme, and a combination of both techniques. Our scheme offers maximal protection against both static and dynamic code analysis and tampering. We validate our techniques by applying them on several benchmark programs of the CPU2006 Test Suite. And finally, we propose a heuristic which trades off security versus performance, resulting in a decrease of the runtime overhead. © 2008 Springer-Verlag Berlin Heidelberg.status: publishe

    Towards Tamper Resistant Code Encryption: Practice and Experience

    No full text
    In recent years, many have suggested to apply encryption in the domain of software protection against malicious hosts. However, little information seems to be available on the implementation aspects or cost of the different schemes. This paper tries to fill the gap by presenting our experience with several encryption techniques: bulk encryption, an ondemand decryption scheme, and a combination of both techniques. Our scheme offers maximal protection against both static and dynamic code analysis and tampering. We validate our techniques by applying them on several benchmark programs of the CPU2006 Test Suite. And finally, we propose a heuristic which trades off security versus performance, resulting in a decrease of the runtime overhead

    Artificial Malware Immunization based on Dynamically Assigned Sense of Self

    No full text
    Abstract. Computer malwares (e.g., botnets, rootkits, spware) are one of the most serious threats to all computers and networks. Most malwares conduct their malicious actions via hijacking the control flow of the infected system or program. Therefore, it is critically important to protect our mission critical systems from malicious control flows. Inspired by the self-nonself discrimination in natural immune system, this research explores a new direction in building the artificial malware immune systems. Most existing models of self of the protected program or system are passive reflection of the existing being (e.g., system call sequence) of the protected program or system. Instead of passively reflecting the existing being of the protected program, we actively assign a unique mark to the protected program or system. Such a dynamically assigned unique mark forms dynamically assigned sense of self of the protected program or system that enables us to effectively and efficiently distinguish the unmarked nonself (e.g., malware actions) from marked self with no false positive. Since our artificial malware immunization technique does not require any specific knowledge of the malwares, it can be effective against new and previously unknown malwares. We have implemented a proof-of-concept prototype of our artificial malware immunization based on such dynamically assigned sense of self in Linux, and our automatic malware immunization tool has successfully immunized real-world, unpatched, vulnerable applications (e.g., Snort 2.6.1 with over 140,000 lines C code) against otherwise working exploits. In addition, our artificial malware immunization is effective against return-to-libc attacks and recently discovered returnoriented exploits. The overall run time performance overhead of our artificial malware immunization prototype is no more than 4%. Keywords Malware Immunization, Control Flow Integrity, Sense of Self.

    Beneficial effects of biochar to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.).

    Get PDF
    The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle θ13\theta_{13} have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal sin22θ23\sin^22\theta_{23}, the octant of θ23\theta_{23}, and the mass hierarchy, in addition to the measurements of δCP\delta_{CP}, sin2θ23\sin^2\theta_{23}, and Δm322\Delta m^2_{32}, for various combinations of ν\nu-mode and νˉ\bar{\nu}-mode data-taking. With an exposure of 7.8×10217.8\times10^{21}~protons-on-target, T2K can achieve 1-σ\sigma resolution of 0.050(0.054) on sin2θ23\sin^2\theta_{23} and 0.040(0.045)×103 eV20.040(0.045)\times10^{-3}~\rm{eV}^2 on Δm322\Delta m^2_{32} for 100\%(50\%) neutrino beam mode running assuming sin2θ23=0.5\sin^2\theta_{23}=0.5 and Δm322=2.4×103\Delta m^2_{32} = 2.4\times10^{-3} eV2^2. T2K will have sensitivity to the CP-violating phase δCP\delta_{\rm{CP}} at 90\% C.L. or better over a significant range. For example, if sin22θ23\sin^22\theta_{23} is maximal (i.e θ23\theta_{23}=4545^\circ) the range is 115<δCP<60-115^\circ<\delta_{\rm{CP}}<-60^\circ for normal hierarchy and +50<δCP<+130+50^\circ<\delta_{\rm{CP}}<+130^\circ for inverted hierarchy. When T2K data is combined with data from the NOν\nuA experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero δCP\delta_{CP} is substantially increased compared to if each experiment is analyzed alone.Comment: 40 pages, 27 figures, accepted by PTE
    corecore